Professor of Haemato-Oncology

Email: arg1000@cam.ac.uk
Home page: https://www.stemcells.cam.ac.uk/research/pis/green
Research themes:
Haematopoiesis, normal and malignant
Description of research
JAK/STAT signaling, stem cell subversion and human myeloproliferative neoplasms
The JAK/STAT pathway has essential roles in several aspects of metazoan biology including haematopoiesis and stem cell function. Somatic mutations affecting this pathway occur in multiple tumour types and are especially common in human myeloproliferative neoplasms. The Green lab is studying the molecular and cellular mechanisms whereby aberrant JAK/STAT signalling subverts haematopoiesis and results in a myeloproliferative neoplasm.
JAK/STAT signalling and the MPNs
The JAK/STAT pathway provides an attractive experimental paradigm for several reasons. It represents a relatively simple and direct link from cell surface/cytoplasmic signalling events to nuclear transcriptional programmes. In addition to the well-described canonical JAK/STAT pathway, recent experiments in flies revealed a non-canonical pathway which opens up chromatin independently of classical STAT-responsive cis-regulatory elements. In collaboration with the Kouzarides group we have recently provided mechanistic insights into this non-canonical pathway by identifying an unexpected role for JAK2 in the nucleus of haematopoietic cells whereby JAK2 phosphorylates histone H3 and modifies chromatin structure directly (see below). There is also a tantalising link between the JAK/STAT pathway, stem cell behaviour and cancer. JAK/STAT signalling is essential for maintenance of several Drosophila stem cell populations and influences the behaviour of mammalian HSCs, ES cells and neural stem cells. These observations may reflect a need for stem cells to maintain their genome in an accessible state, with dysregulation contributing to tumorigenesis.
The BCR-ABL negative MPNs represent a spectrum of clonal haematological disorders, with three main members: polycythaemia vera (PV), essential thrombocythaemia (ET) and idiopathic myelofibrosis (IMF). For many years the identity of molecular lesions remained obscure but in 2005 several groups, including our own, reported that the majority of patients harbor a single acquired gain-of-function mutation in JAK2. Although not always the initiating lesion, mutation of JAK2 clearly plays a central role in MPN pathogenesis with mouse models demonstrating that JAK2 is sufficient to give rise to an MPN. Functional studies have focused on JAK2/STAT5 signalling in the context of Type 1 cytokine receptors, especially EPOR and TPOR. However JAK2 interacts with multiple other cytokine receptors, including members of the gp130, gC, interferon, and IL3 families. JAK2 signalling therefore influences several downstream STATs with the net STAT transcriptional output depending on cellular context.
A major question for the MPN field has been the cause of JAK2 mutation-negative MPNs. We have recently identified unusual mutations in CALR (an ER chaperone) in most JAK2 unmutated patients (Nangalia et al. NEJM 2013). CALR mutations all give rise to a novel C-terminus and occur in the HSC compartment early in disease evolution. Our data reveal a novel biological pathway as a target for tumourigenic mutations, will greatly simplify patient diagnosis and open up the possibility of tumour-specific therapy.
Recent highlights
The discovery of the JAK2 mutation has revolutionised research into the MPNs and has allowed us to provide multiple insights into the molecular and cellular mechanisms by which JAK2 mutations subvert haematopoiesis and result in the various clinical phenotypes associated with human MPNs. These studies have had direct clinical impact with new approaches to classification and diagnosis already embedded in international guidelines. Moreover dissection of the molecular consequences of JAK2 mutations has also provided unexpected insights into fundamental biological mechanisms, including chromatin biology, cytokine signalling and cellular responses to DNA damage. Selected translational and fundamental highlights from the Green lab include:
- JAK2 and MPL status identify sub-types of ET (Campbell et al Lancet 2005; Beer et al Blood 2009).
- Unexpected discovery that AML arising in a patient with a JAK2-mutant MPN frequently lacks a JAK2 mutation (Campbell et al Blood 2006; Beer et al Beer 2010).
- Development of PV but not ET is associated with clones homozygous for the JAK2 mutation and also with an unexpected defect in STAT1 signalling (Scott et al Blood 2006; Chen et al Cancer Cell 2010).
- Discovery of JAK2 exon12 mutations which revealed a clinically distinct subtype of PV (Scott et al NEJM 2007).
- Unexpected clonal complexity of early phase MPNs (Beer et al BJH 2009; Beer et al Blood 2010).
- JAK2 mutation promotes survival of DNA damaged cells by inhibiting BCL-xL deamidation pathway (Zhao et al NEJM 2008).
- Demonstration that JAK2 V617F mutation inhibits haematopoietic stem cell function in a conditional knock-in mouse model of ET (Li et al Blood 2010).
- Unexpected nuclear role for JAK2 as a histone kinase which regulates transcription of target genes and can drive factor-independent ES cell self-renewal (Dawson et al Nature 2009; Griffiths et al Nature Cell Biol 2011).
- Unusual mutations in CALR (an ER chaperone) in most JAK2 unmutated patients (Nangalia et al NEJM 2013).
MPN resources in Cambridge
Over the past decade we have established a powerful combination of clinical resources and research expertise. Tony Green is Chief Investigator for the PT-1 suite of clinical studies (>1200 patients; largest randomized study of any MPN; has been running since 1997; unique prospective dataset and samples). He also directs a specialist MPN clinic – the ability to study fresh samples from well characterized patients greatly facilitates much of our research. Importantly the interaction with the clinical service is 2-way: assays for JAK2V617F, JAK2 exon 12 and MPL mutations have all been transferred to our Regional Diagnostic Service and are already in routine use.
Haematopoiesis in Cambridge
The Green lab is part of a consortium of Cambridge University groups, largely in the CIMR and adjacent buildings, that share a focus on normal and/or leukaemic haematopoiesis. Current programs include transcriptional networks of haematopoietic stem cells (Bertie Gottens), leukaemic stem cells (Brian Huntly), ribosome biology and bone marrow failure syndromes (Alan Warren, LMB), megakaryocyte and platelet biology (Willem Ouwehand and Cedric Ghevaert) and the pathogenesis of the myeloproliferative neoplasms (Tony Green). Particular strengths include close interactions with the Wellcome Trust Sanger Institute (eg Peter Campbell, George Vassiliou, David Adams, Pentao Liu), the Wellcome Trust/MRC Stem Cell Institute (eg Austin Smith, Brian Hendrich, Azim Surani) and with the Addenbrooke’s Department of Haematology.
Professor Green is pleased to consider applications from prospective PhD students.
Research focus
Keywords: Haematopoiesis Haematopoietic stem cells
Clinical conditions: Myeloproliferative neoplasms Myeloid malignancies
Methodologies: Randomised control trials
Cambridge collaborators
Bertie Göttgens (Department of Haematology)
Anne Ferguson-Smith (Physiology, Development & Neuroscience)
Brian Huntly (Department of Haematology)
Tony Kouzarides (Gurdon Institute)
Alan Warren (CIMR)
Addenbrooke’s Department of Haematology, Regional Haemato-Oncology Diagnostic Service and Sample Bank
Other collaborators
Dave Adams (Sanger Institute)
Allan Bradley (Sanger Institute)
Peter Campbell (Sanger Institute)
Nick Cross (Sailsbury NHS Foundation Trust)
Claire Harrison (Guy’s & St.Thomas’ NHS Foundation Trust)
Pentao Liu (Sanger Institute)
Harvey Lodish (Whitehead Institute, Boston)
Mary-Frances McMullin (Queen’s University Belfast)
Katrin Ottersbach (MRC Centre for Regenerative Medicine, Edinburgh)
Timm Schroeder (University of Basel)
Mike Stratton (Sanger Institute)
Alessandro Vannucchi (University of Florence)
Peter Zandstra (Toronto)
Multiple clinicians around UK and Europe
Links
Key Publications
Grockowiak E, Korn C, Rak J, Lysenko V, Hallou A, Panvini FM, Williams M, Fielding C, Fang Z, Khatib-Massalha E, García-García A, Li J, Khorshed RA, González-Antón S, Baxter EJ, Kusumbe A, Wilkins BS, Green A, Simons BD, Harrison CN, Green AR, Lo Celso C, Theocharides APA, Méndez-Ferrer S. Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms. Nat Cancer. 2023 Aug;4(8):1193-1209
Bennett C, Jackson VE, Pettikiriarachchi A, Hayman T, Schaeper U, Moir-Meyer GL, Fielding KL, Ataide R, Clucas D, Baldi AJ, Garnham AL, Li-Wai-Suen CS, Loughran SJ, Baxter EJ, Green AR, Alexander WS, Bahlo M, Burbury K, Ng AP, Pasricha SR. Iron homeostasis governs erythroid phenotype in Polycythemia Vera. Blood. 2023 Mar 16:blood.2022016779. doi: 10.1182/blood.2022016779.
Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, Cull A, Maura F, Sanders MA, Cagan ATJ, McDonald C, Belmonte M, Shepherd MS, Vieira Braga FA, Osborne RJ, Mahbubani K, Martincorena I, Laurenti E, Green AR, Getz G, Polak P, Saeb-Parsy K, Hodson DJ, Kent DG, Campbell PJ. Diverse mutational landscapes in human lymphocytes. Nature. 2022 Aug;608(7924):724-732. doi: 10.1038/s41586-022-05072-7.
. 2022 Jun 29:blood.2021014009. doi: 10.1182/blood.2021014009.
. 2022 Jun;606(7913):343-350. doi: 10.1038/s41586-022-04786-y.
Nature. 2022 Feb;602(7895):162-168. doi: 10.1038/s41586-021-04312-6.
Blood Adv. 2021 Apr 13;5(7):1922-1932. doi: 10.1182/bloodadvances.2020002402.
Cell Stem Cell. 2021 Mar 4;28(3):502-513.e6. doi: 10.1016/j.stem.2021.01.018.
Prins D, Park HJ, Watcham S, Li J, Vacca M, Bastos HP, Gerbaulet A, Vidal-Puig A, Göttgens B, Green AR. The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production. Sci Adv. 2020 Nov 25;6(48):eabd3139. doi: 10.1126/sciadv.abd3139.
Blood. 2020 Jul 2;136(1):6-7. doi: 10.1182/blood.2020005805.
Mutant CALR functions: gains and losses.Hemasphere. 2020 May 21;4(3):e371. doi: 10.1097/HS9.0000000000000371.
Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia.Prins D, González Arias C, Klampfl T, Grinfeld J, Green AR. Mutant Calreticulin in the Myeloproliferative Neoplasms. Hemasphere. 2020 Jan 15;4(1):e333. doi: 10.1097/HS9.0000000000000333.
Sasca D, Yun H, Giotopoulos G, Szybinski J, Evan T, Wilson NK, Gerstung M, Gallipoli P, Green AR, Hills RK, Russell NH, Osborne CS, Papaemmanuil E, Gottgens B, Campbell PJ, Huntly BJP. Cohesin-dependent regulation of gene expression during differentiation is lost in Cohesin-mutated myeloid malignancies. Blood. 2019 Dec 12;134(24):2195-2208. doi: 10.1182/blood.2019001553.
Nangalia J, Mitchell E, Green AR. Clonal approaches to understanding the impact of mutations on hematologic disease development. Blood. 2019;133:1436-1445. doi: 10.1182/blood-2018-11-835405.
Teo, YV, Rattanavirokul N, Olova N, Salzano A, Quintanilla A, Tarrats N, Kiourtis C, Muller M, Green AR, Adams PD, Acosta JC, Bird TG, Kirschner K, Neretti N, Chandra T. Notch signaling mediates secondary Senescence. Cell Rep. 2019;27:997-1007. doi: 10.1016/j.celrep.2019.03.104
Godfrey AL, Campbell PJ, Maclean C, Buck G, Cook J, Temple J, Wilkins BS, Wheatley K, Nangalia J, Grinfeld J, McMullin MF, Forsyth C, Kiladjian JJ, Green* AR, Harrison CN* (*joint senior authors). Hydroxycarbamide plus Aspirin vs Aspirin Alone in Patients with Essential Thrombocythaemia Aged 40-59 years Without High-Risk Features. J Clin Oncol. 2018; Aug 28. doi: 10.1200/JCO.2018.78.8414.
Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M, Osborne RJ, Huntly BJP, Martincorena I, Anderson E, O’Neill L, Stratton MR, Laurenti E, Green AR*, Kent DG*, Campbell PJ* (*joint senior authors). Population dynamics of normal human blood inferred from spontaneous somatic mutations. Nature. 2018;561:473-478. doi: 10.1038/s41586-018-0497-0.
Grinfeld, J+, Nanglia, J+, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, Godfrey AL, Papaemmanuil E, Gundem G, MacLean C, Cook J, Mudie L, O’Meara S, Teague JW, Butler AP, Massie CE, Williams N, Nice FL, Anderson CL, Hasselbach HC, Guglielmelli P, McMullin MF, Vannucchi AM, Harrison CN, Gerstung M, Green AR*, Campbell PJ*. (+joint first authors, *joint senior authors). Disease heterogeneity and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416-30. doi: 10.1056/NEJMoa1716614.
Shepherd MS, Li J, Wilson NK, Oedekoven CA, Li J, Belmonte M, Fink J, Prick JCM, Pask DC, Hamilton TL, Loeffler D, Rao A, Schröder T, Gottgens B, Green AR, Kent DG. Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal. Blood. 2018;132:791-803. doi: 10.1182/blood-2017-12-821066.
*Li J, *Prins D, Park HJ, Grinfeld J, Gonzalez-Arias C, Loughran S, Dovey OM, Klampfl T, Bennett C, Hamilton TL, Pask DC, Sneade R, Williams M, Aungier J, Ghevaert C, Vassiliou GS, Kent DG, Green AR. *Co-first author. Mutant calreticulin knock-in mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood. 2018;131(6):649-661. (PMID 29282219). doi: 10.1182/blood-2017-09-806356.
Comoglio F, Park, HJ, Schoenfelder S, Barozzi I, Bode D, Fraser P, Green AR. Thromopoietin signaling to chromatin elicits rapid and pervasive epigenome remodeling within poised chromatin architectures. Genome Research. 28:295-309 2018. doi: 10.1101/gr.227272.117.
Pagano F, Comoglio F, Grinfeld J, Li J, Godfrey A, Baxter B, Silber Y, Green AR. MicroRNA-101 expression is associated with JAK2V617F activity and regulates JAK2/STAT5 signaling. Leukemia. February 27, 2018. doi: 10.1038/s41375-018-0053-9.
Nieborowska-Skorska M, Maifrede S, Dasgupta Y, Sullivan K, Bac Viet Le, Solecka M, Kubovcakova L, Zhao H, Prchal J, Moliterno A, Koschmieder S, Green AR, Skoda R, Skorski T (2017). Ruxolitinib-induced defects in DNA repair cause sensitivity to PARP inhibitors in myeloproliferative neoplasms. Blood. 2017 Dec 28;130(26):2848-2859. doi: 10.1182/blood-2017-05-784942.
Loughran SJ, Comoglio F, Hamey FK, Giustacchini A, Errami Y, Earp E, Gottgens B, Jacobsen SEW, Mead AJ, Hendrich B, Green AR. Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program. J Exp Med 2017 Oct 2;214(10):3085-3104. doi: 10.1084/jem.20161827.
Nice FL, Massie CE, Klampfl T, Green AR. Determination of complex subclonal structures of haematological malignancies by multiplexed genotyping of blood progenitor colonies. Experimental Hematology. October 9, 2017. doi: 10.1016/j.exphem.2017.09.011.
Kirschner K, Chandra T, Kiselev V, Flores-Santa Cruz D, Macauley IC, Park HJ, Li J, Kent DG, Kumar R, Pask DC, Hamilton TL, Hemberg M, Reik W, Green AR. Proliferation drives aging-related functional decline in a subpopulation of the haematopoietic stem cell compartment. Cell Reports 19, 1503-1511, 2017. doi: 10.1016/j.celrep.2017.04.074.
Kiselev VY, Kirschner K, Schaub M, Andrews T, Chandra T, Natarajan KN, Barahona M, Green AR, Hemberg M. SC3-conensus clustering of single cell RNA-Seq data. Nature Methods 2017 May;14(5):483-486. doi: 10.1038/nmeth.4236.
Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, Alexe G, Corso J, Ströbel P, Wachter A, Beissbarth T, Schnütgen F, Cremer A, Haetscher N, Göllner S, Rouhi A, Palmqvist L, Rieger M, Bönig H, Müller-Tidow C, Kuchenbauer F, Schütz E, Green AR, Urlaub H, Stegmaier K, Humphries RK, Serve H, Oellerich T. (2017). Hoxa9 and Meis1 cooperatively induce addiction to Syk signaling by suppressing miR-146a in acute myeloid leukemia. Cancer Cell. 31, 549-562 April 10, 2017. doi: 10.1016/j.ccell.2017.03.001.
Grinfeld J, Nangalia J, Green AR. Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica. 2017 Jan;102(1):7-17. doi: 10.3324/haematol.2014.113845.
Kollmann K, Warsch W, Gonzalez-Arias C, Nice FL, Avezov E, Milburn J, Li J, Dimitropoulou D, Biddie S, Wang M, Poynton E, Colzani M, Tijssen MR, Anand S, McDermott U, Huntly B, Green T. A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation. Leukemia. 2016 Dec 2. doi: 10.1038/leu.2016.280.
Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott RG, Schäfer M, Fajmann S, Schlederer M, Schiefer AI, Reichart U, Mayerhofer M, Hoeller C, Zöchbauer-Müller S, Kerjaschki D, Bock C, Kenner L, Hoefler G, Freissmuth M, Green AR, Moriggl R, Busslinger M, Malumbres M, Sexl V. A Kinase-Independent Function of CDK6 Links the Cell Cycle to Tumor Angiogenesis. Cancer Cell. 2016 Aug 8;30(2):359-360. doi: 10.1016/j.ccell.2016.07.003.
Nangalia J, Grinfeld J, Green AR. Pathogenesis of Myeloproliferative Disorders. Annu Rev Pathol. 2016 May 23;11:101-26. doi: 10.1146/annurev-pathol-012615-044454.
Mascarenhas MI, Bacon WA, Kapeni C, Fitch SR, Kimber G, Cheng SW, Li J, Green AR, Ottersbach K. Analysis of Jak2 signaling reveals resistance of mouse embryonic hematopoietic stem cells to myeloproliferative disease mutation. Blood. 2016 May 12;127(19):2298-309. doi: 10.1182/blood-2015-08-664631.
Godfrey AL, Chen E, Massie CE, Silber Y, Pagano F, Bellosillo B, Guglielmelli P, Harrison CN, Reilly JT, Stegelmann F, Bijou F, Lippert E, Boiron JM, Döhner K, Vannucchi AM, Besses C, Green AR. STAT1 activation in association with JAK2 exon 12 mutations. Haematologica. 2016 Jan;101(1):e15-9.
Chen E, Ahn JS, Sykes DB, Breyfogle LJ, Godfrey AL, Nangalia J, Ko A, DeAngelo DJ, Green AR, Mullally A. RECQL5 Suppresses Oncogenic JAK2-Induced Replication Stress and Genomic Instability. Cell Rep. 2015 Dec 22;13(11):2345-52. doi: 10.1016/j.celrep.2015.11.037.
Park HJ, Li J, Hannah R, Biddie S, Leal-Cervantes AI, Kirschner K, Flores Santa Cruz D, Sexl V, Göttgens B, Green AR. Cytokine-induced megakaryocytic differentiation is regulated by genome-wide loss of a uSTAT transcriptional program. EMBO J. 2015 Dec 23. pii: e201592383.
Nangalia J, Nice FL, Wedge DC Dr, Godfrey AL, Grinfeld J, Thakker C, Massie CE, Baxter J, Sewell D, Silber Y, Campbell PJ, Green AR. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica. 2015 Aug 6. pii: haematol.2015.
Ahn JS, Li J, Chen E, Kent DG, Park HJ, Green AR. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2015 Aug 3.
Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sánchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, Ponting CP, Voet T, Caldas C, Stingl J, Green AR, Theis FJ, Göttgens B. Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell. 2015 Jun 4;16(6):712-24. doi: 10.1016/j.stem.2015.04.004.
Kent DG, Ortmann CA, Green AR. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015 May 7;372(19):1865-6.
Lau WW, Hannah R, Green AR, Göttgens B. The JAK-STAT signaling pathway is differentially activated in CALR-positive compared with JAK2V617F-positive ET patients. Blood. 2015 Mar 5;125(10):1679-81.
Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, Baxter EJ, Massie CE, Papaemmanuil E, Menon S, Godfrey AL, Dimitropoulou D, Guglielmelli P, Bellosillo B, Besses C, Döhner K, Harrison CN, Vassiliou GS, Vannucchi A, Campbell PJ, Green AR. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015 Feb 12;372(7):601-12.
Godfrey AL, Nangalia J, Baxter EJ, Massie CE, Kent DG, Papaemmanuil E, Campbell PJ, Green AR. Nongenetic stochastic expansion of JAK2V617F-homozygous subclones in polycythemia vera. Blood. 2014 Nov 20;124(22):3332-4.
Chen E, Ahn JS, Massie CE, Clynes D, Godfrey AL, Li J, Park HJ, Nangalia J, Silber Y, Mullally A, Gibbons RJ, Green AR. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15190-5.
Kollmann K, Nangalia J, Warsch W, Quentmeier H, Bench A, Boyd E, Scott M, Drexler HG, Green AR. MARIMO cells harbor a CALR mutation but are not dependent on JAK2/STAT5 signaling. Leukemia. 2015 Feb;29(2):494-7.
Li J*, Kent DG*, Godfrey AL, Manning H, Nangalia J, Aziz A, Chen E, Saeb-Parsy K, Fink J, Sneade R, Hamilton TL, Pask DC, Silber Y, Zhao X, Ghevaert C, Liu P and Green AR. *Joint first authors. JAK2V617F-homozygosity drives a phenotypic switch between myeloproliferative neoplasms in a murine model, but is insufficient to sustain clonal expansion. Blood, 123(20): 3139-51, 2014.
J. Nangalia*, C.E. Massie*, E.J. Baxter, F.L. Nice, G. Gundem, D.C. Wedge, E. Avezov, J. Li, K. Kollmann, D.G. Kent, A. Aziz, A.L. Godfrey, J. Hinton, I. Martincorena, P. Van Loo, A.V. Jones, P. Guglielmelli, P. Tarpey, H.P. Harding, J.D. Fitzpatrick, C.T. Goudie, C.A. Ortmann, S.J. Loughran, K. Raine, D.R. Jones, A.P. Butler, J.W. Teague, S. O’Meara, S. McLaren, M. Bianchi, Y. Silber, D. Dimitropoulou, D. Bloxham, L. Mudie, M. Maddison, B. Robinson, C. Keohane, C. Maclean, K. Hill, K. Orchard, S. Tauro, M.-Q. Du, M. Greaves, D. Bowen, B.J.P. Huntly, C.N. Harrison, N.C.P. Cross, D. Ron, A.M. Vannucchi, E. Papaemmanuil, P.J. Campbell, and A.R. Green. *Joint first authors. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med, 369(25): 2391-2405, 2013.
Aziz A*, Baxter EJ*, Edwards C, Cheong CY, Ito M, Bench A, Kelley R, Silber Y, Beer PA, Chng K, Renfree MB, McEwen K, Gray D, Nangalia J, Mufti GJ, Hellstrom-Lindberg E, Kiladjian JJ, McMullin MF, Campbell PJ, Ferguson-Smith AC, Green AR. *Joint first authors. Cooperativity of imprinted genes inactivated by acquired chromosome 20 deletions. Journal of Clinical Investigation, 123(5): 2169-82, 2013.
Kent DG, Li J, Tanna H, Fink J, Kirschner K, Pask DC, Silber Y, Hamilton TL, Sneade R, Simons BD, Green AR. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLoS Biology, 11(6) e1001576, 2013.
Griffiths DS, Li J, Dawson MA, Trotter M, Cheng YH, Smith A, Mansfield W, Liu P, Kouzarides T, Nichols J, Bannister A, Green AR and Göttgens B. LIF independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nature Cell Biology, 13(1): 13-21, 2011.
Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, Warren AJ, Gilliland DG, Lodish HF, Green AR. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356: 459-468, 2007.
Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP, Ingle CE, Dermitzakis ET, Campbell PJ, and Green AR. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell, 18(5): 524-535, 2010.
Dawson MA1, Bannister AJ1, Gottgens B, Foster SD, Bartke T, Green AR*, Kouzarides T* (*joint senior authors; 1joint first author). JAK2 phosphorylates histone H3Y41 and excludes HP1a from chromatin. Nature, 461(7265): 819-822, 2009.
Zhao R, Follows GA, Beer PA, Scott LM, Huntly BJP, Green AR*, Alexander DR* (*joint senior authors). Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N Engl J Med, 359(26): 2778-2789, 2008.